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ABSTRACT

;7*/53

A computer programme is described for calculating the
classical and quantal JWKB Chapman-Enskog collision integrals
Q(Z’S)(T) for any reasonable interaction potential. With the
programme it was possible in about 10 or 15 minutes on a fast
computer to calculate more than 500 collision integrals covering
a complete range of values of /, s, and T to an accuracy of
better than 1 part in 1,000. This was made possible by the use
of efficient numerical techniques such as weighted Gaussian
quadratures and by the general optimization of all numerical and
logical processes.

The programme was checked against previous tables for the
Lennard~Jones and Stockmayer potentials. It was also used to list
values of the collision integrals and Kihara's corrections to
the coefficients of viscosity, thermal conductivity, diffusion

and thermal diffusion for the Morse potential. e
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I. INTRODUCTION

In the Chapman-Enskog theory1 of a dilute gas the
transport properties of the gas can be expressed in terms of a
set of collision integrals, Q(z’s)(T). These are functions of
the temperature, T, and they depend on the interaction potentials
between the atoms or molecules of the gas. They have been
tabulated at different temperatures for a number of special
interaction potentials involving a small number of pa.rameter’sz_4
and these tables have been used extensively in calculations of
the transport properties of gases. Evidence has been accumulating
which indicates that these interaction potentials may be
inadequate for describing the equilibrium and transport
properties of gases over a wide range of physical condi’tions.,‘l—6
More flexible potentials are needed to represent the interactions
between real atoms and molecules and an efficient method for
calculating the collision integrals for these potentials is
therefore needed. Such a method should be able to deal with as
many as possible of the shapes of interaction potentials which
are likely to be found between atoms and molecules, and for
calculations on a large scale it should be designed for automatic
rather than for manual computation.

This paper describes the numerical methods used in a
computer programme built to calculate the collision integrals
for any reasonable interaction. In the last part of the paper

tables of collision integrals obtained for the Morse potential

are listed.
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In the theory of Chapman and Enskog the collision

integrals take the form
1

i
o4 (py - (_2_%‘_) exp(-x2)x25%3 (P (yx1x) ax, (1)

x0

L

o

in which pu is the reduced mass of the two interacting systems
and k is Boltzmann's constant. The collision cross section
S(z)(E) is a function of E, the initial kinetic energy of the
colliding particles in their center-of-mass coordinates.

In the classical approximation, valid at high energies, the

cross section is given by
(e

s (g = 2r | b-costy)ab, 2)
a

where b is the impact parameter and x is the classical angle

of deflection of the relative velocity vector,

'X~7T—2b -F—.-(v?j—, (3)

where roo the classical tur?ing point, is the outermost zero
2

of F(r) = [1—¢(r)/E_b%/r?] and ¢(r) is the interaction

potential.

In the quantum theory7 the cross sections are given by
T

2
S(ﬂ)(E) = 27 'f(x){ (l—cosﬂx)sin x dy, (4)

0
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in which f(yx) is the scattering amplitude given by

0

() = Q%E zgj (2n+1) Pn(cos X) [exp(2ibn) - 1:], (5)
n=0

where én is the scattering phase shift, n is the angular momentum
1

quantum number, and k=(2uE)? ir is the wave number. By

substitution of (5) into (4) it can be shown8 that S(I%E)and S(zkE)

reduce to

S(l)(E) n'ég ;E:(n+l) sinz(bn—6n+1) ,
k n
(6)
(2) - s (n+l) (n+2) . 2,
(B = ;5 :Ej “ome3 - SInT (=800

The phase shift, o can be evaluated accurately only by the

solution of a differential equa’cion,g’10 which is a lengthy

n’

process if numerical methods have to be used. The phase shift

is therefore often evaluated by the approximate JWKB formulall

i 273 27 %
6 =k 1lim 1 - 2 P dr- -p—2 dr (, (7
n E 2 r
Rﬁoo ; r
T P
where p = (n+3)/k and r'm is the outermost zero of the integrand
in the first integral. In the semiclassical 1imit12 b=p and
it follows that
~ o 49 _—
X = 2 an and r= T

Further, if the summations in (6) are replaced by integrals,

the resulting semiclassical cross sections can be shown to be



identical with the classical cross sections. (This is used

later to check the accuracy of the computer programme),
Numerical Difficulties

The calculation of the collision integrals thus reduces
in the classical approximation to the evaluation of a triple
integral represented by the equations (1), (2) and (3), and to
a problem of similar difficulty in the JWKB case. The numerical
integration of any triple integral is laborious even when the
integrands are well behaved. 1In the present case there are two
additional problems: (i) the singularities in the integral
expressions for the deflection angle and the JWKB phase shift
at r = o and (ii) the rapid oscillation of the integrand in
(2) corresponding to the spiralling of the particles about one
another at certain impact parameters when the interaction
potential is attractive - a phenomenon known as or’biting,z’12

These difficulties considerably lengthen the calculations;
so for rapid computation it was necessary to use efficient
numerical techniques. In particular, in place of the more usual
finite difference formulae, Aitken's method13 was used for
interpolation and integrals were evaluated with weighted
Gaussian quadratures14 involving a large number of abscissas,
These methods are suitable for use with digital computers but
they are less convenient for desk machine calculations,

It was also not practical to build a computer programme



to deal with any shape of interaction potential. Some
limitations had to be set on the form of the potential. It
was possible, however, to choose these limitations such that
they included all the known interactions between atoms and
molecules. The programme could deal with any interaction
potential having the following characteristics:

(i) the potential and all its derivatives should be smoath

for all values of r

(ii) the potential should have at most one minimum and at most
one long range maximum;

(iii) the potential should fall off at infinity at léast as
fast as r_2. ~Almost all the potentials used in earlier
calculations satisfy these conditions, the exception being
potentials involving a discontinuity. The computer programme
could therefore be checked using existing tabulations, and
these could in turn be checked by the programme. Such a
comparison of results is discussed at the end of the paper. In
the following chapter the numerical methods are discussed in

more detail,

I1., NUMERICAL METHODS

One of the principal difficulties encountered in the
evaluation of the classical collision integrals is the pole

in the integral expression in (1) for the classical deflection
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angle at r=r_. A similar problem arises in the evaluation of
the JWKB phase shift. The singularity can be removed either by

a change of vzatriabﬁleg’15’16 0

r by the use of a suitably weighted
Gaussian quadrature (this will be discussed later).

If the variable of integration in the integral expression
for S(ﬂ)(E) in (2) is left unchanged, it is necessary to calculate
ry with great accuracy for each value of b required. Because of
the difficulty of finding a method for determining ro accurately,
a method independent of the form of the potential, the variable
of integration in (2) is conveniently changed from b to r .3’15’17
Although this simplifies the classical calculations it cannot be
used for the evaluation of the JWKB cross sections in which ro
must be found for each integral value of the angular momentum
quantum number arising in the summation in (6). For this reason
and because a fast numerical method was found for determining ro
accurately, a change of variable was not used in the present
programme and the integral in (2) was evaluated directly.

The calculation of the integral in (2) and of ¥, &, and ro
is complicated at energies which exhibit the phenomenon of
orbiting. For this reason it was essential to be able to predict
the orbiting collisions. Thus one of the earliest features of
the present method is the determination of a set of parameters

which define at which energies and at which impact parameters

orbiting occurs,



The Orbiting Parametfers
Orbiting occurs at an energy E and an impact parameter
bo if there is an internuclear separation ry at which

CP"eff (ro) =<9@ff (ro)_ E =0, (9)

where Poft (r) is the effective potential defined by
Pops (1) =0 (r) + 'Yr2(n+%)2 / 2,ur’2, (10)

ﬁz(n+%)2/2p is replaced by b2E in the classical case. Provided

that the potential is attractive for some values of r there

is an energy range which exhibits orbiting. The upper limit

of the range is the critical energy, EC9 at which
t - = Y —
® eff (10) ? eff (ro) 0, (1)
and
Vst (ro) = Eq. (12)

The lower limit, E is non-zero if the potential has a long

LC’

range maximum and E is given by

1.C

ELC = o (1) nax . (13)

If the potential is always repulsive then EC:=09 and if the
potential is always attractive then ELC:=O and ch=m.
The computer programme calculated these two parameters by

examining the sign of ¢'(r) over the whole range of internuclear



distances r. ELC was found from (1 ) after first finding the

position of the maximum by interpolating o' (r) to zero. EC

was found by noting that in a plot of the orbiting impact

parameter bO against r., a maximum value, b0= b is obtained

C?

at a certain internuclear distance, r, = Teo It is readily

shown that this maximum corresponds to the critical energy and

that EC is given by

E (r

c = Pers (TQ)

with b set equal to bC'

The calculations are simplified since in practice it is

possible to estimate two energies E and Em‘ above and

max in

below which there is no effective contribution to the Q(z’s)(T)

integrals for the range of temperatures of interest. Thus the

cross sections S(E)(E) need only be evaluated between Emax

and E_.
m

The practical estimation of E and E . will be
in max min

C and ELC lie

outside the range (Emin’ Emax) their exact numerlca} values

discussed later., If the critical energies E

are immaterial provided only that they lie on the correct side
of the energy range. For example, if no orbiting occurs between
E . and E then it is sufficient to set E, = E = 0 whether
min max C LC

or not orbiting occurs at other energies. 1In the first sub-
programme, therefore, the parameters EC and ELC were found

by scanning the potential only at internuclear distances

E Y. At the same

corresponding to the energy range (Emin’ max



time if orbiting occurred between E . and E then a table
min max

of corresponding triads (r09 b , E) was determined. This table

0
was used in the calculation of the turning point described in

the following section,

The Approximate Turning Point

Except in the case of some special potentials T is
determined most rapidly by inverse interpolation. To ensure
that this interpolation converges it is necessary to know
close upper and lower bounds to the turning point. At orbiting
energies these can be estimated with the help of the orbiting
parameters.

At Orbiting Energies. If ELC < EKL EC then the parameters r

(o)

and bO corresponding to E can be obtained by interpolation

in the table of orbiting parameters calculated in the earlier
sub~programme. By examining the three curves in Fig. 1, one
for b < bo’ one for b = bO and one for b > bo’ it 1is clea?
that L is an upper bound to T when b < bo and that it is a
lower bound when b > bo’ This eliminates the possibility of

finding a zero of f(r) (r)- E other than the zero

T Pefs
corresponding to the turning point when f(r) has more than one
zero. Lower and upper bounds respectively can be obtained by
scanning f(r) for r < r and for r > ry respectively. These

limits on r, can then be brought closer together by halving the

interval four or five times and examining the sign of f(r).
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This procedure was used in the programme only for
the lowest impact parameter below bO arising in the quadrature
replacing the integral in (2), It was also used for the
lowest value of b > bo. In other cases the process could be

speeded up by noting that if bi and bi+ are two impact

1

parameters and r_ . and r their respective turning points

m, i m,i+l

and if b, >bi then r 1> r So in the programme the

i+1 m, i+ m, i’

impact parameters in the quadrature were chosen in order of
magnitude beginning with the smallest, i.e., b1< b2<(b3, ete.

Then r..oq was first found using ro close bounds to r..o were
? ?

found by scanning just above r and the same process was

m, 1

followed for r etc,

m,S; I'm,4;
For b>bo provided that the potential was attractive
the speed with which r, was determined was improved by noting

that rm< b. Then since

rm,i < rmyi+1 < bi+19

close upper and lower bounds were known without calculation,

At Non-Orbiting Energies. The same methods were used at non-

orbiting energies except that there was no initial starting

point corresponding to the parameter ro except when E < ELC“

Then rm>>r for all impact parameters. r is the position

LC LC
of the long range potential maximum. Otherwise the computer
scanned f(r) on either side of b1 using logarithmic intervals

till approximate upper and lower bounds were found to the turning
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point corresponding to bl' These were then improved by halving
the interval four or five times, For all subsequent impact
parameters the turning points were found in the same way as in

the orbiting case,

The Exact Turning Point

When an upper and a lower bound to ro had been obtained,

that is two values of r such that
Porp(r)) = E<C 00 oplry) - E

an accurate value of r, was found rapidly by the successive
use of Aitken's interpolation formulals. lLet x =
and consider r as a function of x such that rlﬁr(xl),
r2=r(x2), and rm=r(0). Aitken's two-point formula was used to
find a first approximation to r(0), r=rq, by interpolating
between Xy and Xg. Xg

~ . . . s
(xl,rl),(xz,rz) and (x3,r3) were used in Aitken's three-point

was calculated and the three points

formula to obtain a better approximation, Tye This process was
repeated using higher order interpolating formulae till two
successive approximations to r  were sufficiently close
together. 1In general ro was accurate to 6 or 7 figures provided

that rl and r2 were not too distant from rm,
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The Classical Deflection Angle

The integral in the expression for the classical
deflection angle in (3) can be evaluated using the Gauss~Mehler
quadrature formu1a1§ which eliminates the pole at ro by
effectively dividing the integrand in (3) by (1-rm2/r2)%. The

classical deflection angle then becomes

1
i Th ph
X = m- Nr_ ;{_1 ay/2y-j+1 7 Flrg/ay, (14)

in which N is an even integer and 2= cos(2j-1)7/2N, This
method was adopted in preference to earlier methods of evaluating
X because of its accuracy and simplicity.18 The coefficients
aj were calculated at the beginning of the programme, In practice
less than 10 points (N=20) were needed to ensure several figure
accuracy both for non-orbiting energies and for orbiting energies
when b > bo’

When the impact parameter is less than but close to b09
a large sharp maximum appears to the integrand of (3) resulting
in a loss of accuracy. In an attempt to take fuller account of
this maximum the variable in the integral in (3) was changedg’ls’16
to B = sin_l(rm/r) to eliminate the singularity at T Each
of the intervals (0, w/4) and (w/4, w/2) was then evaluated by
Gaussian quadratures using as many as 64 points in each interval,

Although a great deal clumsier this only gave significantly

different results from a 60 point Gauss-Mehler quadrature at the
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very lowest energies when the maximum in the integrand occurred

at very large values of r.

The JWKB Phase Shift

Like the classical deflection angle the JWKB phase shift
in (7) was evaluated by Gauss-Mehler quadratures.18 Two formulae

were used. The first is

N-1 R.2 T
km 2 j } akm 2
O = == . far.” F(r. + 1 [F R.)~- . + —— b~ F(b 15
N 2, wJ{ S Fa)+ 5 (R~ o . (b) (15)
in which
b~r r b
@ = n , T, = m - 3
r J _ a7
m (b-r )cos(2N1+ ro

Because the abscissas, rj and Rj , and weights, wj, are functions
of jm/N, it was possible to evaluate successive approximations

to 5 with N = 2,4,8, etc. with only a small amount of extra
computing. For example, ¢&(N=8) was calculated from 5(N=4) and
the four terms in the series corresponding to j = 1,3,5 and 7.
This process was repeated with successively higher values of N
till & was found with sufficient accuracy. It needed about 64
points to reach about 3 figure accuracy in most cases.

Two other Gauss-Mehler quadrature formulae have been derived
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by Smith17 for an effective potential which is repulsive for
r > e These are considerably more efficient than (15)., It

was found that the more complicated of these formulae was the

simpler to use:

it

2. N 2 3 v :
Noory Yy ”E’%b /Ty @ (rj’/E] 2(n2)-3+1  (16)

5 = KT %: ,
in which
i,2 o (r.)
- < (23=1 - d
rJ-—rm/cob (ZN > T, qJ = b/l_r 5+ —f ‘]
J

(The other formula, Eq.(3.5) in the paper by Smith, was not
adopted because it involved inverse interpolation). The
accuracy of (16) is illustrated in Table I, which lists values
of the phase shifts for different impact parameters when

o (r)/E = 4(r~ 12 r-6) and 2u=4 ., Only two points are needed
in the integration to obtain phase shifts accurate to

several decimal places. This method made it possible to cal-

culate as many as a hundred phase shifts per second on an

IBM 7090 computer.

The Cross Sections

The quantal cross sections in (6) were evaluated by
summing over the angular momentum quantum numbers without

difficulty. The classical cross sections were calculated by
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the evaluation of the integral in (2). The integral had to be
evaluated by different methods at orbiting and non-orbiting
energies,

At Orbiting Energies. The principal difficulty in evaluating

(2) at orbiting energies is the infinite oscillation of the
integrand at bo” This difficulty has usually been overcome in
the past by breaking the integral into three regions, one about
bO and two more on either side of bo’ The integral about bO
was either evaluated analyticallyBs’19 or approximated by its
mean valuel5. These methods lengthen the calculations; so a
more straightforward method was tried.

The integral was separated into two parts only, the
first from 0 to bo and the second from bO to infinity. The

first integral was evaluated using only the positive abscissas,

Xy and the corresponding weights, Wy of a Gaussian

quadrature20’21
2
2 2! 2
b(l-cos”y ) db = =] <bibi(1—cos X3 (17)
i=1
0
where b, = b _x. and y. is evaluated for b=b,. If x,_ is the
i o1i i i N

Gaussian abscissa closest to unity the absiccas are concentrated
near bO where the integrand was largest and where it was
changing most rapidly. It was found that the rapid oscillations
were so close to bO that even when 32 positive Gaussian points
were being used the integrand was\oscillating only two or three

times between 0 and bNo Because of the closeness of bN to bo
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and because of the small magnitude of the last few weightg,wN
and ON-17 it was hoped that the rapid oscillations between
bN and bO could be neglected. It was found that this
simplification is surprisingly accurate: a comparison of the
integrations of S(l)(E) with 24 and 32 Gaussian points is
illustrated in Table II.

The same principle applies to the integration from bO
to infinity. In this the Gauss—Laguerre method described by

20

Dalgarno and Smith was adopted. The integral was replaced

by the quadrature
[#0)

N
) £
- - W ) b.(1- 3, 18
b (l-cos™y)db = a 521 ( jEXP Yj) bJ(l cos XJ) (18)

3

in which Xj was evaluated for the impact parameter bj==bo+ oy
22

.j’
and yj and Wj were the Gauss-Laguerre abscissas and weights

with YN the largest abscissa. The rapid oscillation at b0 occurs
between bO and the first abscissa, bl; it was therefore neglected.
The scaling factor, a, was found not to affect the quadrature
significantly provided that the integrand was just falling

below the maximum premissable error near b = bO + 0y The factor,
o, was computed initially using this condition.

At Non-Orbiting Energies. At energies well above the critical

energy (E > 2E_, say) and for E < E the integrand in (2) has

C LC
only one or two oscillations and the quadrature formula (18) can
be used with bo set equal to zero, This normally gave cross

sections accurate to 3 and more figures with 32 Gauss-Laguerre
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points in the integration.

At energies above but close to EC (say EC<:E< 2EC)
X has a large negative value near the rainbow ang1e12 at an
impact parameter br and this causes considerable oscillations
in the integrand of (2). So for these energies the integral was
evaluated by the same technique used for the orbiting energies
but with b0 replaced by approximations to br found by
extrapolating the orbiting impact parameters to energies above
EC'

The Collision Integrals

The collision integrals in (1) were also evaluated by

the Gauss~Laguerre quadrature formula,

1

, 2 N
(£,8) v <kT ) S S+1 (D)
Q (T) 2 Zj_iO Wiy ST (KT y,) . (19)

This requires that S(E)(E) be known for a different set of

energies at each temperature T. Since the collision integrals are

normally calculated for a number of temperatures it is not

practical to calculate the cross sections in each case from

first principles. So instead a set of energies was chosen and

the appropriate cross sections were found by accurate interpolation.
The energies were chosen as follows, From the maximum

and minimum temperatures of interest, T and Tmin9 the energy

max

range over which the cross sections were needed was found from
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the equations

Emax - kT'max Iy o
(20)
Emin - kTmin Yy o
where Yq and yy were already defined for equation (19)., Because
log S(ﬂ) is such a slowly varying function of log E for

E<EC and for Ej>2EC, in these regions energies were chosen

at equal logarithmic intervals and subsequent interpolations

£

were used with tables of log S against log E rather than

with tables of S(ﬂ) against E. Between EC and 2EC the cross

sections usually show some oscillation and it was found

simpler to choose the energies at equal intervals and to

£

interpolate with tables of S against E.

Because of the simplicity with which it can be used
and programmed, Aitken's me'thod13 was used for interpolations
with two tabulated energies (when possible) on either side
of each energy arising in (19). It was found that even when
Emax was several orders of magnitude larger than Emin accurate
interpolation was possible with only fifteen energies in each
of the regions log (Emin) to log (EC) and log (2EC) to log (Emax)

c and 2EC. The cross

sections had therefore to be calculated at only about 40 energies.

and with only ten energies between E
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Accurac

The number of points taken in each integration has
already been stated; they were designed to give an accuracy of
one part in 1,000 in the cross sections. The accuracy was
appreciably greater than this at high energies but near EC
the cross sections may be in error by at most 3 parts in 1,000. .
Since the collision integrals are integrated over these cross
sections they should be more accurate than this at all temperatures.

The speed of the programme depends principally on the
number of times it is necessary to calculate F(r). For orbiting
energies this is about 2,000 times per cross section and about
500 times at non-orbiting energies. It was found that on an
IBM 7090 computer the cross sections S(z)(E) for £ =1, 2, 3
and 4 could be calculated for the 40 energies necessary in about
three minutes. A further 10 seconds was sufficient to evaluate
Q(z’s)(T) for £ =1, 2, 3, 4 and s =1, 2, 3, 4 at each
temperature.

For an accuracy of about 1% about ten times fewer points
are needed to evaluate S(E)(E) and only 5 energies are necessary
in éach of the three energy ranges. So even the smallest
computer could be used to produce the collision integrals to this

accuracy.
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ITI. RESULTS

The programme was checked by comparison with existing

tables of collision integrals for a few potentials. Three of

these are the Lennard-Jones (12-6) potentia1,2’3b
12 6
- g - [=
o(r) =4e¢ l(r) (r> ‘] , (21)
3b

the Stockmayer (12-6-3) potential,

o (r) = 4¢ [(%) - - (g) 64-%)(%) 3] (22)

and the Morse potential,17

\ A\,
o(r) = € { exp [—2 (g) (r-r)) - 2 exp,-- ) (r-rez] s

L \
(23)

aja

in which re/o =1 + fn(2)/C, and C is a parameter determined by
the width of the well. A comparison of the results for these

three potentials is discussed below.

- mayexr Potentials

Because the Lennard-Jones potential is the same as the
Stockmayer potential with 6§ = 0 the two potentials are
considered together. The collision integrals for the (12-6)
potential have been calculated by a number of people2 including

Itean, Glueck, and Svehla23; Monchick and MasonSb; and recently
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Barker, Fock, and Smith4a These separate calculations are in
good agreement for most values of the reduced temperature,
T*= kT/e . They therefore served as an excellent check on the
accuracy of our programme.

It was found that our computed collision integrals
agreed best with the calculations of Monchick and Mason:
agreement was better than 1 part in 1,000 except for T*> 30
when the difference was not more than 3 parts in 1,000, At
these high temperatures the computer collision integrals agreed
to four and five figures with those of Itean et al., suggesting
that Mason and Monchick are slightly in error above T = 30.
Otherwise our results showed that Monchick and Mason's tables
are the most accurate available and suggested that the
programme was accurate at all temperatures,

Similar small discrepancies for T*> 30 were noted
between the computer collision integrals and those calculated
by Monchick and Mason for the Stockmayer potential when & was
positive. Otherwise the computer was able to reproduce Monchick
and Mason's tables on the Stockmayer potential to better than
1 part in 1,000, confirming again both the accuracy of these

tables and the computer programme,

Morse Potential

After the programme was fully tested on the Stockmayer
and Lennard-Jones potentials it was used to evaluate the

collision integrals for the Morse potential for different values
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of the parameter C. Good agreement was obtained in most cases
with the results of Lovell and Hirschfelderl7, In the case of
C =8 and C = 10, however, disagreement was as much as 10%
at the lowest reduced temperatures (T*= 0.2)., This disagreement
was traced to discrepancies in the low-energy cross sections,

In case this might be due to some error in the programme,
some JWKB cross sections were calculated by summing over the
phase shifts. When g was small the JWKB cross sections oscillated
about the classical cross sections. As p increased the amplitudes
of the oscillations grew smaller until they effectively disappeared
when y = 106° At this value of u the present classical and JWKB
cross sections agreed to three figures at those energies where
disagreement was obtained with Lovell and Hirschfelder. This
suggested that the present collision integrals were correct,

Since our results are partly in disagreement with those
of Lovell and Hirschfelder and since their results are as yet
unpublished, we have computed some quantities useful in the
calculations of transport properties for systems interacting with a
Morse potential. As is well known, the Morse potential function

does not become infinite at zero separation:
N r . s
¢(0) = 4E éexp(Ci]i_ exp(C) - i}

Whereas the computer program could deal with a potential that did
not have a hard core, it was felt that it was physically unrealistic

to calculate cross sections at energies in excess of ¢ (0).
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In Table III, ¢ (0) is shown for a number of values of C,
For values of C > 4.0, the energies of interest in the present
calculations all fell below 9(0) and for C < 4.0, an upper

energy bound was set such that

Emax = 0(0).

This upper energy bound in turn sets an upper bound on the
temperature range for which collision integrals could be
calculated. This upper temperature bound is also noted in
Table III.

The results of our calculations are presented for
different values of C in Table IV, The quantities listed are

X : 3 ) ;
Qb D¥any, o2y, £, 1, 1y, A%, BY, Y, EY, P, and

X x. X
&kﬁj . The reduced collision integrals Q(l’l)(T*) and 9(2’2)(T*)
2

are defined as

1
QB SM ey 2(21/k) ® o4 (1

. —_ X
(s¢1)! [1-4 ED T 762 (24)

The quantities fﬂ, T

!

and fb_ are factors used to obtain
24

A

Kihara's second approximation to the coefficients of viscosity,

thermal conductivity and diffusion, respectively:

. 3 ¥ 2
fn =1 4 196 (8E™-7 ) ,
B 1 *_ 2

= 1+ (6C*-5)/16A%+ 40).

&
|
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The quantity EKOEJ is Kihara's second approximation to the isotopic
2
thermal diffusion factor given by

(1 + 5. (26)

[a k] _ _15(6C*-5) (2A% 5)
o, 2A* (16A* - 12B*+ 55)

where 6k is a correction factor given by Masonzg, The quantities

*

A* , B* 5 c* , E° , and F* are defined as

* *
A* — 9(2;2) / Q(l,l) ,

)

B - [59(1,2)*_ 49(1,3)fl/5(1,1)*’

- * X

* ¥
D* = Q(273) / Q(2’2) ,
m 9(393)*/ Q(lil)*.

The table lists values of the above quantities only for
c=1, 2, 4, 6, 8, and 20, This set of values of C was found
to be sufficient for interpolation between C = 1 and C = 20 to an
accuracy of a small fraction of 1% if graphs of the quantitiés in
the tables were drawn against log C. (In some cases a log-log
graph gives more accurate results). |

In the same way it was found that it was possible to
interpolate for any reduced temperature with a table containing
many fewer temperatures than are usually given in tables of

collision integrals., The list of temperatures in Table IIl1 was
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sufficient for interpolation to a few parts in 1,000 if the
quantities were drawn against log T*, In the case of the collision
integrals themselves greatest accuracy was obtained from a plot

(£,8)*

of log Q against log TF.
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Fig.

1 An illustration of the use of the orbiting
parameters r, and bO in the calculation of the
turning point: if b1 > b0 then ry > rys if b2 < b0

then r2 < ro.



Potf(r)= @ (r)+b E /r°




TABLE I

Comparison of calculations of & by the Gauss-Mehler formula in

(16) for the Lennard-Jones (12-6)potential with 6=1 and E = ¢

Impact Parameter

a !
3 N :
2 3 4
2 0.082165 0.009779 0.002305
4 0.081824 0.009776 0.002304
12 0,081823 0.009776 0.002304

a
2 N is the number of integration points,



TABLE IIX

A comparison of the cross sections S(ﬂ)(E) evaluated for the
Lennard-Jones (12-6) potential with & =1 and € = 1, by

Gaussian integration with different numbers of integration points,N.

0.0063 0.0710 0.2382 0.7985 1,278

32 42.34 18.89 12,58 8.166 6.337

24 ? 42,35 18.86 12.57 8.157 6.335




TABLE III

Upper bounds on the temperature range at which collision
integrals have been calculated because @ (0) is finite

for the Morse potential.

*
c ® (0) T max
1.0 18.7 0.46
2.0 188.8 4.6
3.0 1,533.4 37.4

4.0 11,705.4 285.5
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